QUATERNARY QUATERNARY AND TERTIARY Tmp Tep 3 Miocene TERTIARY Eocene TERTIARY OR CRETACEOUS CRETACEOUS КЈир Lower Cretaceous KJs KJv S Upper Jurassic JURASSIC JURASSIC OR JRt JRvs TRIASSIC Tesv } Upper Triassic TRIASSIC MESOZOIC OR MzPzp MzPzu PALEOZOIC } Middle and Pzs PALEOZOIC Pzv Pzp Silurian OLDER Older Pzsv In the course of U.S. Geological Survey investigations of the Ketchikan and Prince Rupert quadrangles, 2602 stream-sediment samples were collected. Samples were analyzed for up to 30 elements by a 6-step, semiquantitative emission spectroscopic method (Grimes and Marranzino, 1968) and for up to 5 elements by atomic-absorption spectrophotometry (Ward and others, 1969). This map shows sample collection sites for 2321 samples which were analyzed for copper by the atomic-absorption method. Complete analytical data plus location maps (scale 1:125,000), station coordinates, and a discussion of sampling analytical procedures for samples from sites shown on this map are published in two reports (Koch and Elliott, 1978b, c). These data are also available on magnetic computer tape (Koch, Van Trump, and McDanal, 1978). Folio of the Ketchikan and Prince Rupert Quadrangles, Alaska Koch and others -- Geochemistry - Cu Background levels vary for different lithologies and in different areas. Because of this and variability introduced from other sources such as sampling practice, analytical variance, and degree of chemical weathering, it is impossible to select a specific analytical level above which values indicate mineralization. For this reason, the analytical values have been grouped into four ranges with each range represented by a different symbol on the map. Higher values may indicate a greater likelihood of bedrock mineralization but confidence levels are low for single-element "anomalies" and results which are not supported by neighboring values are not supported by neighboring values. ## DESCRIPTION OF MAP UNITS UNCONSOLIDATED DEPOSITS, UNDIVIDED (Quaternary) VOLCANIC ROCKS (Quaternary and Tertiary) UNDIVIDED MIOCENE PLUTONIC ROCKS UNDIVIDED EOCENE PLUTONIC ROCKS UNDIVIDED TERTIARY OR CRETACEOUS PLUTONIC ROCKS GRAVINA ISLAND FORMATION AND UNNAMED CORRELATIVE ROCKS (Lower Cretaceous or Upper Jurassic) Ultramafic and other plutonic rocks Metasedimentary rucks Metavolcanic rocks TEXAS CREEK GRANODIORITE (Jurassic or Triassic) METAMORPHOSED VOLCANIC AND SEDIMENTARY ROCKS (Jurassic or Triassic) METAMORPHOSED SEDIMENTARY AND VOLCANIC ROCKS (Upper Triassic) Koch, R. D., and Elliott, R. L., 1978a, Analyses of rock samples from the Ketchikan quadrangle, southeastern Alaska: U.S. Geol. Survey openfile rept. 78-156A, 163 p. 1978b, Analyses of rock and stream-sediment samples from the Prince Rupert quadrangle, southeastern Alaska: U.S. Geol. Survey open-file rept. 78-156B, 98 p. Selected References Berg, H. C., Elliott, R. L., Smith, J. G., and Koch, R. D., 1978, Geologic map of the Ketchikan and Prince Rupert quadrangles, Alaska: U.S. Geol. Survey open-file rept. 78-73A, 1 sheet, scale 1:250,000. Grimes, D. J., and Marranzino, A. P., 1968, Direct-current arc and alternating-current spark emission spectrographic field methods for the semiquantitative analysis of geologic material: U.S. Geol. Survey __1978c, Analyses of stream-sediment samples from the Ketchikan quadrangle, southeastern Alaska: U.S. Geol. Survey open-file rept. 78-156C, 214 p. Koch, R. D., Van Trump, George, Jr., and McDanal, S. K., 1978, Magnetic tape containing analytical data for rock and stream-sediment samples from Ketchikan and Prince Rupert quadrangles, 'southeastern Alaska: U.S. Geol. Survey Rept., 8 p., computer tape [Available from the Natl. Tech. Inf. Service, U.S. Dept. Commerce, Springfield, VA NTIS PB-276-777]. Ward, F. N., Nakagawa, H. M., Harms, T. F., and Van Sickle, G. H., 1969, Atomic-absorption methods of analysis useful in geochemical exploration: U.S. Geol. Survey Bull. 1289, 45 p. PARAGNEISS AND AMPHIBOLITE (Mesozoic or Paleozoic) METAMORPHIC ROCKS, UNDIVIDED (Mesozoic or Paleozoic) METAMORPHOSED SEDIMENTARY AND MINOR VOLCANIC ROCKS (Middle and upper Paleozoic) FELSIC METAVOLCANIC ROCKS (Paleozoic or older) PLUTONIC ROCKS, CHIEFLY TRONDHJEMITE (Silurian or older) METAMORPHOSED SEDIMENTARY AND VOLCANIC ROCKS (Silurian or older) Contact. Approximately located; dotted where concealed ______ __ ... High-angle fault. Dashed where inferred; dotted where concealed ____ Thrust fault. Dashed where concealed, inferred, or assumed Sawteeth on upper plate 2205 Number of samples 0.2 percent 14.0 12.0 Arithmetic Mean Standard Deviation Geometric Mean Geometric Deviation 2.0 200 REPORTED VALUES OF COPPER (PPM) Calculations based on 2321 analyses with a lower limit of determinability of 5.0 ppm > Reported values of 5 to 95 represent 5 ppm-wide class intervals and values of 100 or greater represent 10 ppm-wide class intervals. Graph bars are plotted with a consistent width of 5, to maintain correspondence between area and number of samples. Base from USGS 1:250,000 topo series: KETCHIKAN, 1955; PRINCE RUPERT, 1959. ALASKA-CANADA. > SCALE 1:250 000 CONTOUR INTERVAL 200 FEET DATUM IS MEAN SEA LEVEL APPROXIMATE MEAN DECLINATION, 1955 MAP SHOWING COPPER DETERMINED BY ATOMIC ABSORPTION IN STREAM SEDIMENTS, KETCHIKAN AND PRINCE RUPERT QUADRANGLES, ALASKA Geology by H. Berg, R. Carten, J. Childs, A. Clark, W. Condon, M. Diggles, G. Dunne, R. Elliott, C. Holloway, J. Houghton, R. Koch, R. Miller, R. Rudser, J. Smith, B. Wiggins, 1966-1977 1978